Chemical Equilibrium Part 1 Review

1. Write the concentration equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ for each of the following chemical reactions.
(a) $2 \mathrm{CH}_{4(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{C}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$
(b) $\mathrm{Ni}_{(\mathrm{s})}+4 \mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{Ni}(\mathrm{CO})_{4(\mathrm{~g})}$
(c) $2 \mathrm{HgO}_{(\mathrm{s})} \Leftrightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$
(d) $4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
(e) $2 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
(f) $\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \Leftrightarrow \mathrm{AgCl}_{(\mathrm{s})}$
(g) $\mathrm{CO}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
2. Which side of the equilibrium is favored, products or reactants, for each of the following where, $\mathrm{A} \Leftrightarrow \mathrm{B}$.
(a) $\mathrm{K}_{\mathrm{eq}}=1.375 \times 10^{-3}$
(b) $\mathrm{K}_{\text {eq }}=1375$
(c) $\mathrm{K}_{\mathrm{eq}}=1.00$
3. In your own words, paraphrase Le Châtelier's Principle.
4. Given the equilibrium, $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-386 \mathrm{KJ} / \mathrm{mol}$, predict the direction the equilibrium will shift (forward, reverse, no shift) if:
(a) N_{2} is added.
(b) H_{2} is removed.
(c) NH_{3} is added.
(d) NH_{3} is removed.
(e) the volume of the container is decreased.
(f) the pressure is increased by adding Argon gas.
(g) the reaction is cooled.
(h) equal number of moles of H_{2} and NH_{3} are added.
5. Predict what will happen when the reaction volume is decreased in each of the following reactions.
(a) $6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})}$
(b) $\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
(c) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}$
6. Given the following equilibrium: $2 \mathrm{NO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Delta \mathrm{H}=-58.0 \mathrm{~kJ}$, predict the effect of each of the following changes on this he equilibrium (forward, reverse, no shift)
(a) add $\mathrm{N}_{2} \mathrm{O}_{4}$
(b) remove NO_{2}
(c) increase the volume
(d) decrease the temperature
(e) add N_{2}
7. The equilibrium constant for the following reaction is 5.0 at $400^{\circ} \mathrm{C}$.

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Determine the direction of the reaction if the following amount (in moles) of each compound is placed in a 1.0 L flask.
(a)
(b)
(c)
(d)

$\mathrm{CO}_{(\mathrm{g})}$	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$	$\mathrm{CO}_{2(\mathrm{~g})}$	$\mathrm{H}_{2(\mathrm{~g})}$
0.50	0.40	0.80	0.90
0.01	0.02	0.03	0.04
1.22	1.22	2.78	2.78
0.61	1.22	1.39	2.39

8. Given the equilibrium concentrations of $\left[\mathrm{O}_{2}\right]=0.21 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{O}_{3}\right]=6.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$, calculate the value of K_{c} for the reaction: $2 \mathrm{O}_{3(\mathrm{~g})} \Leftrightarrow 3 \mathrm{O}_{2(\mathrm{~g})}$.
9. At a particular temperature a 2.0 L flask contains $2.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}, 0.40 \mathrm{~mol} \mathrm{H}_{2}$, and 0.80 mol S_{2}. Calculate K_{c} at this temperature for the reaction: $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{S}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
10. Consider the following equilibrium: $2 \mathrm{CH}_{4(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{C}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$.

If the initial concentration of CH_{4} is $0.0300 \mathrm{~mol} / \mathrm{L}$ and the equilibrium concentration of $\mathrm{H}_{2} \mathrm{C}_{2}$ is $0.01375 \mathrm{~mol} / \mathrm{L}$
(a) calculate the equilibrium concentrations of CH_{4} and H_{2}
(b) calculate the numerical value of K_{c}.
11. Consider the following equilibrium: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})} \mathrm{K}_{\mathrm{c}}=54.5$ at $425^{\circ} \mathrm{C}$.

If $0.020000 \mathrm{~mol} / \mathrm{L} \mathrm{HI}_{(\mathrm{g})}$ is allowed to reach equilibrium, predict the concentrations of $\mathrm{H}_{2(\mathrm{~g})}$, $\mathrm{I}_{2(\mathrm{~g})}$, and $\mathrm{HI}_{(\mathrm{g})}$.
12. The equilibrium constant, K_{c}, is 0.1764 at $1500^{\circ} \mathrm{C}$ for $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$. If the initial concentration of CO is $0.1000 \mathrm{~mol} / \mathrm{L}$ and the initial concentration of $\mathrm{H}_{2(\mathrm{~g})}$ is $0.300 _\mathrm{mol} / \mathrm{L}$, what are the equilibrium concentrations of all species?
13. At a certain temperature, $4.0 \mathrm{~mol} \mathrm{NH}_{3}$ is introduced into a 2.0 L container, and the NH_{3} partially dissociates by the reaction: $\mathrm{NH}_{3(\mathrm{~g})} \Leftrightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$. At equilibrium, $2.0 \mathrm{~mol} \mathrm{NH}_{3}$ remains. What is the value of K_{c} for this reaction?
14. At a particular temperature, $\mathrm{K}_{\mathrm{c}}=1.00 \times 10^{2}$ for the reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{HF}_{(\mathrm{g})}$.
(a) In an experiment, $2.00 \mathrm{~mol} \mathrm{H}_{2}$ and $2.00 \mathrm{~mol} \mathrm{~F}_{2}$ are introduced into a 1.00 L flask. Calculate the concentration of all species at equilibrium.
(b) An additional $0.50 \mathrm{~mol} \mathrm{H}_{2}$ is added to the equilibrium mixture in part (a). Calculate the new equilibrium concentrations of all gases.

