Chemical Equilibrium Part 1 Review

- 1. Write the concentration equilibrium constant (K_c) for each of the following chemical reactions.
 - (a) $2CH_{4(g)} \Leftrightarrow H_2C_{2(g)} + 2H_{2(g)}$
 - (b) $Ni_{(s)} + 4CO_{(g)} \Leftrightarrow Ni(CO)_{4(g)}$
 - (c) $2HgO_{(s)} \Leftrightarrow 2Hg_{(l)} + O_{2(g)}$
 - (d) $4HCl_{(g)} + O_{2(g)} \Leftrightarrow 2H_2O_{(l)} + 2Cl_{2(g)}$
 - (e) $2HCl_{(g)} + O_{2(g)} \Leftrightarrow H_2O_{(g)} + Cl_{2(g)}$
 - (f) $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \Leftrightarrow AgCl_{(s)}$
 - (g) $CO_{2 (aq)} + 2H_2O_{(l)} \Leftrightarrow HCO_{3 (aq)} + H_3O^{+}_{(aq)}$
- 2. Which side of the equilibrium is favored, products or reactants, for each of the following where, $A \Leftrightarrow B$.
 - (a) $K_{eq} = 1.375 \times 10^{-3}$
 - (b) $K_{eq} = 1375$
 - (c) $K_{eq} = 1.00$
- 3. In your own words, paraphrase Le Châtelier's Principle.
- 4. Given the equilibrium, $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)} \Delta H = -386$ KJ/mol, predict the direction the equilibrium will shift (forward, reverse, no shift) if:
 - (a) N_2 is added.
 - (b) H₂ is removed.
 - (c) NH₃ is added.
 - (d) NH₃ is removed.
 - (e) the volume of the container is decreased.
 - (f) the pressure is increased by adding Argon gas.
 - (g) the reaction is cooled.
 - (h) equal number of moles of H₂ and NH₃ are added.
- 5. Predict what will happen when the reaction volume is decreased in each of the following reactions.
 - (a) $6CO_{2(g)} + 6H_2O_{(l)} \Leftrightarrow C_6H_{12}O_{6(s)} + 6O_{2(g)}$
 - (b) $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$
 - $(c) \ H_{2(g)} \, + \, CO_{2(g)} \, \Longleftrightarrow \, H_2O_{(g)} \, + \, CO_{(g)}$
- 6. Given the following equilibrium: $2NO_{2(g)} \Leftrightarrow N_2O_{4(g)} \Delta H = -58.0 \text{ kJ}$, predict the effect of each of the following changes on this he equilibrium (forward, reverse, no shift)
 - (a) add N₂O₄
 - (b) remove NO₂
 - (c) increase the volume
 - (d) decrease the temperature
 - $(e) \ add \ N_2$

CH40S

7. The equilibrium constant for the following reaction is 5.0 at 400 °C.

$$CO_{(g)} \ + \ H_2O_{(g)} \ \Leftrightarrow \ CO_{2(g)} \ + \ H_{2(g)}$$

Determine the direction of the reaction if the following amount (in moles) of each compound is placed in a 1.0 L flask.

	$CO_{(g)}$	$H_2O_{(g)}$	$CO_{2(g)}$	H _{2(g)}
(a)	0.50	0.40	0.80	0.90
(b)	0.01	0.02	0.03	0.04
(c)	1.22	1.22	2.78	2.78
(d)	0.61	1.22	1.39	2.39

- 8. Given the equilibrium concentrations of $[O_2] = 0.21 \text{ mol/L}$ and $[O_3] = 6.0 \text{ x } 10^{-8} \text{ mol/L}$, calculate the value of K_c for the reaction: $2O_{3 \text{ (g)}} \iff 3O_{2\text{(g)}}$.
- 9. At a particular temperature a 2.0 L flask contains 2.0 mol H_2S , 0.40 mol H_2 , and 0.80 mol S_2 . Calculate K_c at this temperature for the reaction: $2H_{2(g)} + S_{2(g)} \Leftrightarrow 2H_2S_{(g)}$
- 10. Consider the following equilibrium: $2CH_{4(g)} \Leftrightarrow H_2C_{2(g)} + 2H_{2(g)}$. If the initial concentration of CH_4 is 0.0300 mol/L and the equilibrium concentration of H_2C_2 is 0.01375 mol/L
 - (a) calculate the equilibrium concentrations of CH₄ and H₂
 - (b) calculate the numerical value of K_c.
- 11. Consider the following equilibrium: $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)} K_c = 54.5$ at 425 °C. If 0.020000 mol/L HI $_{(g)}$ is allowed to reach equilibrium, predict the concentrations of $H_{2(g)}$, $I_{2(g)}$, and $HI_{(g)}$.
- 12. The equilibrium constant, K_c , is 0.1764 at 1500 °C for $CO_{(g)} + 3H_{2(g)} \Leftrightarrow CH_{4(g)} + H_2O_{(g)}$. If the initial concentration of CO is 0.1000 mol/L and the initial concentration of $H_{2(g)}$ is 0.300_mol/L, what are the equilibrium concentrations of all species?
- 13. At a certain temperature, 4.0 mol NH₃ is introduced into a 2.0 L container, and the NH₃ partially dissociates by the reaction: NH_{3(g)} \Leftrightarrow N_{2(g)} + H_{2(g)}. At equilibrium, 2.0 mol NH₃ remains. What is the value of K_c for this reaction?
- 14. At a particular temperature, $K_c = 1.00 \times 10^2$ for the reaction: $H_{2(g)} + F_{2(g)} \Leftrightarrow HF_{(g)}$.
 - (a) In an experiment, 2.00 mol H₂ and 2.00 mol F₂ are introduced into a 1.00 L flask. Calculate the concentration of all species at equilibrium.
 - (b) An additional 0.50 mol H₂ is added to the equilibrium mixture in part (a). Calculate the new equilibrium concentrations of all gases.

CH40S Page 2 of 2